
International Journal of Heat and Mass Transfer 173 (2021) 121225 

Contents lists available at ScienceDirect 

International Journal of Heat and Mass Transfer 

journal homepage: www.elsevier.com/locate/hmt 

Generalized Boltzmann transport theory for relaxational heat 

conduction 

Shu-Nan Li ( � � � ), Bing-Yang Cao ( ��� ) ∗

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 

10 0 084, China 

a r t i c l e i n f o 

Article history: 

Received 17 December 2020 

Revised 13 February 2021 

Accepted 14 March 2021 

Keywords: 

Boltzmann transport theory 

Boltzmann transport equation (BTE) 

relaxational heat conduction 

collision term 

drift term 

a b s t r a c t 

Relaxational heat conduction lacks a modified transport theory at the mesoscopic level. We establish 

a modified Boltzmann transport theory with the generalized collision term, which can give rise to the 

convolution relationship between the heat flux and temperature gradient as well as fractional Fourier 

law. The macroscopic relaxational behaviors are thereafter connected to mesoscopic memory effects in 

the generalized collision term. The modified Boltzmann transport theory not only provides an underlying 

explanation for macroscopic relaxational heat conduction but also possesses engineering applications to 

situations far from equilibrium. The generalized collision term is not unique framework for relaxational 

heat conduction, and generalizing the drift term in the Boltzmann transport equation (BTE) can also cover 

macroscopic models. However, this framework will be paired with anomalies in energy continuity and 

entropy balance, and as a consequence, it is not suggested for relaxational heat conduction. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Relaxational heat conduction [1-8] is a common non-Fourier 

lass, wherein heat conduction at time t = t 0 depends on not only 

he states at time t = t 0 but also the whole history in [ 0 , t 0 ] . One

ypical class is the theory of heat waves [1] , wherein the heat flux 

 ( x , t ) is formulated as a convolution of the temperature gradient 

T ( x , t ) , namely, 

 ( x , t ) = −
∫ t 
0 

M 

(
t − t ′ 

)∇T 
(
x , t ′ 

)
dt ′ , (1) 

ith M(ξ ) the relaxation function. Based on Eq. (1) , various con- 

titutive models can arise from different choices of M(ξ ) , and 

t is therefore considered an universal formulation for wave- 

ike heat conduction. For instance, an exponential kernel, M(ξ ) = 

exp ( −ξ/τ ) , will give rise to the Cattaneo model [6] as follows 

 + τ
∂q 

∂t 
= −κ∇T , (2) 

here κ denotes the thermal conductivity and τ is the relax- 

tion time. The Cattaneo model is the most celebrated and sim- 

le constitutive relation [1] which can overcome infinite speeds of 

eat propagation traceable to Fourier’s law. Another typical relax- 

tion function takes the form of the Dirac delta function, namely, 
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(ξ ) = κδ( ξ − τ ) . This kernel corresponds to the following single- 

hase-lagging model [ 7 , 9 ], 

 ( x , t + τ ) = −κ∇T ( x , t ) . (3) 

hich can be connected to the Cattaneo model through the first- 

rder Taylor expansion of the heat flux. 

Despite the universality in non-Fourier heat conduction, 

q. (1) cannot cover relaxational behaviors described in terms of 

ractional-order operators [10-17] , i.e., the fractional Fourier law 

16] as follows 

 ( x , t ) = −κθ1 −α ∂ 1 −α

∂ t 1 −α
∇T ( x , t ) 

= −κθ1 −α 1 

	( α) 

∂ 

∂t 

∫ t 
0 

(
t − t ′ 

)α−1 ∇T 
(
x , t ′ 

)
dt ′ , (4) 

ith α ∈ ( 0 , 1 ) and θ a material constant. Different from 

he fractional-order Cattaneo-type models [18-21] , the fractional 

ourier law is a generalization of Fourier’s law rather than the 

attaneo model. The fractional Fourier law also reflects a relax- 

tional behavior between the heat flux and temperature gradient, 

ut it cannot be included by Eq. (1) . Another unsatisfactory prob- 

em of Eq. (1) is that it is only a macroscopic description yet lacks 

esoscopic understandings. However, specific cases of Eq. (1) like 

he Cattaneo model can be derived from the Boltzmann transport 

quation (BTE) [22-26] at the mesoscopic level, namely, 

∂ f P 
∂t 

+ v g �∇ f P = C ( f P ) , (5) 

https://doi.org/10.1016/j.ijheatmasstransfer.2021.121225
http://www.ScienceDirect.com
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herein f P = f P ( x , t, k ) stands for the phonon distribution func- 

ion, k denotes the wave vector, v g is the phonon group velocity, 

nd C( f P ) stands for the collision term. In the framework of the 

oltzmann transport theory, the Cattaneo model emerges from the 

ocal equilibrium assumption ( ∇ f P ≈ ∇ f 0 ) and single mode relax- 

tion time approximation: 

 ( f P ) = − f P − f 0 
τ

. (6) 

here f 0 = 

1 
exp ( h̄ ω / k B T ) −1 

is the Bose-Einstein distribution, h̄ is the 

educed Planck constant, k B is the Boltzmann constant, and ω is 

he angle frequency. Here, the local equilibrium assumption is at 

he mesoscopic level, while the Cattaneo model describes macro- 

copic local non-equilibrium effects. 

Since a specific case of Eq. (1) , the Cattaneo model, possesses a 

tatistical and mesoscopic foundation, it is necessary to establish a 

undamental transport theory for Eq. (1) . On the other hand, relax- 

tional heat conduction beyond Eq. (1) like the fractional Fourier 

aw calls for transport theory likewise. The main aim of the present 

aper is to address the two questions. In this work, we propose 

wo subclasses of the phonon BTE which enable the macroscopic 

elaxation to cover both Eq. (1) and the fractional Fourier law. The 

rst subclass is based on the generalized collision term, while the 

ther generalizing the drift term. We compare the two subclasses, 

nd suggest the generalized collision term as an universal meso- 

copic understanding for relaxational heat conduction. 

. Generalized collision term 

We first recall the statistical definitions of the heat flux q ( x , t ) 

nd energy density u ( x , t ) : 

 ( x , t ) = 

∫ 
v g f P ( x , t, k ) h̄ ωdk 

= 

∫ 
v g [ f P ( x , t, k ) − f 0 ] h̄ ωdk , (7a) 

 ( x , t ) = 

∫ 
f 0 ̄h ωdk 

= 

∫ 
f P ( x , t, k ) h̄ ωdk . (7b) 

The temporal Laplace transform of an integrable function 

( ., t ) is given by 

 LT ( ., p ) = 

∫ + ∞ 

0 

ψ ( ., t ) exp ( −pt ) dt , (8) 

herein p should fulfill lim 

t→ + ∞ 

| ψ( ., t ) exp ( −t Re p ) | = 0 . In order to 

btain Eq. (1) , the collision term is generalized as 

 ( f P ) = 

∫ t 
0 

X 
(
t − t ′ 

)[
f P 
(
x , t ′ , k 

)
− f 0 

]
dt ′ + 

∂ 

∂t 
[ f P ( x , t, k ) − f 0 ] , 

(9) 

hich satisfies the restriction 
∫ 
C( f P ) dk ≡ 0 . The generalized colli- 

ion term consists of two terms. The first term reflects the memory 

ffect of the scattering process, namely that the scattering process 

t t 0 depends on the whole history of the non-equilibrium term 

 f P ( x , t, k ) − f 0 ] in [ 0 , t 0 ] . The second term is contributed by the 

emporal derivative of the non-equilibrium term at t 0 , which does 

ot involve the memory effect. Upon multiplying Eq. (5) by v g ̄h ω
nd integrating it over the wave vector space, we acquire 

∂q ( x , t ) 

∂t 
+ 

κ

τ
∇T ( x , t ) = 

∫ t 
0 

X 
(
t − t ′ 

)
q 
(
x , t ′ 

)
dt ′ + 

∂q ( x , t ) 

∂t 

⇒ 

∫ t 
X 
(
t − t ′ 

)
q 
(
x , t ′ 

)
dt ′ = 

κ

τ
∇T ( x , t ) 
0 

2 
⇒ q LT ( x , p ) = 

κ

τX LT ( p ) 
∇ T LT ( x , p ) . (10) 

In Eq. (10) , the thermal conductivity is calculated as κ = 

1 
3 | v g | 2 cτ , and c = 

∫ ∂ f 0 
∂T 

h̄ ωdk is the specific heat capacity per unit 

olume. The temporal Laplace transform of Eq. (1) reads 

 LT ( x , p ) = −M LT ( p ) ∇ T LT ( x , p ) , (11a) 

nd combining it with Eq. (10) yields 

 LT ( p ) = − κ

τM LT ( p ) 

⇒ X ( t ) = − κ

2 πτ i 

∫ ζ+ i ∞ 

ζ−i ∞ 

exp ( pt ) 

M LT ( p ) 
dp , (11b) 

herein ζ is an auxiliary parameter to guarantee the conver- 

ence. Besides Eq. (1) , the generalized collision term expressed by 

qs. (9) and (11b) is able to expect the fractional Fourier law as 

ell, and the corresponding memory kernel is written as 

 ( ξ ) = − θα−1 

	( 1 − α) τξα
. (12) 

Thereupon, we have obtained an universal collision term for re- 

axational heat conduction expressed by Eqs. (9) and (11b) . This 

eneralized collision term provides a mesoscopic understanding for 

acroscopic phenomenological relaxation based on the Boltzmann 

ransport theory, namely that the evolution of phonon distribution 

unction exhibits memory behaviors. 

Our generalized Boltzmann transport theory not only provides 

n underlying explanation for macroscopic relaxational models but 

lso possesses engineering applications. For the system wherein 

on-stationary heat conduction is dominated by the memory 

egime, the non-Fourier relaxation should be considered. For in- 

tance, the fractional Fourier law is recently investigated in heat 

ransfer induced by gas adsorption [16] . The experimental results 

erform a slow thermal diffusion stage, which supports the frac- 

ional Fourier law yet cannot be reproduced by Fourier’s law. Here, 

e propose a mesoscopic mechanism for the fractional Fourier law 

n terms of the following collision term, 

C( f P ) = − θα−1 

	( 1 −α) 

∫ t 
0 

1 
( t −t ′ ) α

[ f P ( x ,t 
′ , k ) − f 0 ( x ,t 

′ ) ] 
τ dt ′ 

+ 

∂ 
∂t 
[ f P ( x , t, k ) − f 0 ( x , t ) ] . 

(13) As a specific 

ase of Eq. (9) , Eq. (13) corresponds to the memory kernel 

( t − t ′ ) ∝ ( t − t ′ ) −α , which implies that the memory effect obeys 

 power-law decaying. The fractional Fourier law can degenerate to 

lassical Fourier’s law, yet always differs from the Cattaneo model, 

hich corresponds to the single mode relaxation time approxi- 

ation. Thus, Eq. (13) cannot degenerate to the single mode re- 

axation time approximation. The parameters ( α, θ ) can be de- 

ermined by measurements in the near-equilibrium region. Mean- 

hile, the relaxation time τ can be obtained in a stationary heat 

onduction process. The one-dimensional heat conduction problem 

n [ 0 , L ] is taken as an example, which is induced by a constant 

emperature difference �T . In this problem, we have κ = − qL 
�T 

and 

he relaxation time is written as τ = − 3 qL 

�T | v g | 2 c with q the one- 

imensional heat flux. Indeed, the relaxation time in Eq. (13) corre- 

ponds to the stationary transport property, which can only reflect 

he stationary scattering. In the engineering situations far from 

quilibrium, neither measurements on macroscopic quantities nor 

acroscopic constitutive models are accessible. Thereby, one can 

se a mesoscopic description by Eq. (13) instead. 

. Generalized drift term and comparisons 

For a given macroscopic quantity, there exist different phonon 

istribution functions, and hence the mesoscopic Boltzmann trans- 

ort theory for macroscopic relaxation is not unique. In the follow- 

ng, we will show that Eq. (1) and the fractional Fourier law can 
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lso be obtained via generalizing the drift term. Using the Laplace 

ransform approach stated above, one can demonstrate that the 

ollowing BTE can also lead to Eq. (1) , 

∂ f P ( x , t, k ) 

∂t 
+ 

∫ t 
0 

M 

(
t − t ′ 

)
κ

v g �∇ f P 
(
x , t ′ , k 

)
dt ′ 

= − f P ( x , t, k ) − f 0 ( x , t ) 

τ
+ 

∂ 

∂t 
[ f P ( x , t, k ) − f 0 ( x , t ) ] . (14a) 

For the fractional Fourier law, the corresponding BTE is written 

s 

∂ f P ( x , t, k ) 

∂t 
+ 

θ1 −α

	( α) 

∂ 

∂t 

∫ t 
0 

(
t − t ′ 

)α−1 
v g �∇ f P 

(
x , t ′ , k 

)
dt ′ 

= − f P ( x , t, k ) − f 0 ( x , t ) 

τ
+ 

∂ 

∂t 
[ f P ( x , t, k ) − f 0 ( x , t ) ] . (14b) 

Although the generalized drift terms can give rise to macro- 

copic relaxational models, they will be parried with two anoma- 

ies. 

The first anomaly is related to the continuity equation. Upon 

ultiplying Eq. (5) by h̄ ω and integrating it over the wave vector 

pace, we can derive the standard continuity equation, 

∂u ( x , t ) 

∂t 
+ ∇ � q ( x , t ) = 0 . (15) 

Nevertheless, Eqs. (14a) and (14b) will lead to the following 

ontinuity equations, respectively, 

∂u ( x , t ) 

∂t 
+ ∇ �

[ ∫ t 
0 

M 

(
t − t ′ 

)
κ

q 
(
x , t ′ 

)
dt ′ 

] 

= 0 , (16a) 

∂u ( x , t ) 

∂t 
+ ∇ �

[
θ1 −α

	( α) 

∂ 

∂t 

∫ t 
0 

(
t − t ′ 

)α−1 
q 
(
x , t ′ 

)
dt ′ 

]
= 0 , (16b) 

hich are obviously unconventional. Eq. (16a) will reduce to the 

tandard continuity equation if and only if M(ξ ) = κδ(ξ ) , while for 

q. (16b) , the standard continuity equation occurs only in the limit 

→ 1 . Meanwhile, the constitutive model becomes Fourier’s law. 

t indicates that the constitutive and continuity equations are not 

ndependent of each other, and non-Fourier relaxational models 

ust coexist with unconventional continuity equations. We men- 

ion that such coexistence has been discussed by previous studies 

 1 , 8 , 27 ], but the discussion is not based on the generalized drift

erm. This expectation differs from usual understandings of relax- 

tional heat conduction. For instance, the experimental results in 

ef. [16] support a non-Fourier constitutive model and the stan- 

ard continuity equation. 

The other anomaly involves the entropic concepts and entropy 

alance equation, namely, 

∂s ( x , t ) 

∂t 
= −∇ � J ( x , t ) + σ ( x , t ) , (17) 

here s ( x , t ) stands for the local entropy density, J ( x , t ) is the en-

ropy flux, and σ ( x , t ) denotes the entropy production rate. In the 

ear-equilibrium region, these entropic concepts can be expressed 

n the framework of classical irreversible thermodynamics (CIT) 

28] , namely, 

 

 

 

 

 

 

 

 

 

s ( x , t ) = 

∫ T ( x ,t ) c 
T 
dT 

J ( x , t ) = 

q ( x ,t ) 
T ( x ,t ) 

σ ( x , t ) = q ( x , t ) �∇ 

[
1 

T ( x ,t ) 

] . (18) 

At the statistical level, the CIT formulation can be obtained from 

oltzmann-Gibbs statistical mechanics and Eq. (5) , which will be 
3 
ubsequently illustrated. In Boltzmann-Gibbs statistical mechanics, 

he entropy density of phonons is written as 

 = k B 

∫ 
[ ( f P + 1 ) ln ( f P + 1 ) − f P ln f P ] dk , (19) 

hose temporal derivative reads 

∂s 

∂t 
= k B 

∫ 
∂ f P 
∂t 

ln 

(
f P + 1 

f P 

)
dk . (20) 

Substituting Eq. (5) into Eq. (20) yields 

∂s 

∂t 
= −∇ �

{ 

∫ 
v g k B [ ( f P + 1 ) ln ( f P + 1 ) − f P ln f P ] dk 

} 

+ k B 

∫ 
C ( f P ) ln 

(
f P + 1 

f P 

)
dk , (21) 

nd we thereafter obtain 

 = 

∫ 
v g k B [ ( f P + 1 ) ln ( f P + 1 ) − f P ln f P ] dk , (22a) 

= k B 

∫ 
C ( f P ) ln 

(
f P + 1 

f P 

)
dk . (22b) 

hen the distribution function is sufficiently close to the equilib- 

ium distribution, we can employ the following expansions, 

n 

(
f P + 1 

f P 

)
= ln 

f 0 + 1 

f 0 
− ( f P − f 0 ) 

( f 0 + 1 ) f 0 
+ O 

(| f P − f 0 | 2 
)

= 

h̄ ω 

k B T 
− ( f P − f 0 ) 

( f 0 + 1 ) f 0 
+ O 

(| f P − f 0 | 2 
)
, (23a) 

( f P + 1 ) ln ( f P + 1 ) − f P ln f P = ( f 0 + 1 ) ln ( f 0 + 1 ) − f 0 ln f 0 

+ ( f P − f 0 ) ln 

(
f 0 + 1 

f 0 

)
+ O 

(| f P − f 0 | 2 
)
. (23b) 

Using Eq. (23a) , the entropy density in Eq. (19) can be simpli- 

ed as 

∂s 

∂T 
= k B 

∫ 
∂ f P 
∂T 

ln 

(
f P + 1 

f P 

)
dk 

= k B 

∫ 
∂ f P 
∂T 

[
h̄ ω 

k B T 
+ O ( | f P − f 0 | ) 

]
dk 

= 

c 

T 
+ k B 

∫ 
∂ f P 
∂T 

O ( | f P − f 0 | ) dk , (24) 

hich agrees with the CIT entropy density as the re- 

ainder term is neglected. Upon combining Eq. (23b) and 
 

v g k B [ ( f 0 + 1 ) ln ( f 0 + 1 ) − f 0 ln f 0 ] dk ≡ 0 , Eq. (22a) is reformed 

s 

 = 

∫ 
v g k B 

[
( f P − f 0 ) ln 

(
f 0 + 1 

f 0 

)
+ O 

(| f P − f 0 | 2 
)]

dk 

= 

∫ 
v g k B 

[
( f P − f 0 ) 

h̄ ω 

k B T 
+ O 

(| f P − f 0 | 2 
)]

dk 

= 

q 

T 
+ 

∫ 
v g k B O 

(| f P − f 0 | 2 
)
dk . (25) 

ith the remainder term neglected, the CIT entropy flux is repro- 

uced. Owing to the entropy balance equation, the entropy produc- 

ion rate in Eq. (18) should also coincide with the CIT framework. 

Accordingly, the entropic concepts based on Eq. (5) are consis- 

ent with the CIT framework in the near-equilibrium region. Nev- 

rtheless, Eqs. (14a) and (14b) will expect entropic concepts devi- 

ting from the CIT framework even in the absence of the remain- 

er terms. Eqs. (14a) and (14b) correspond to the following entropy 
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alance equations, respectively, 

∂s 

∂t 
= −k B 

∫ [∫ t 
0 

Y 
(
t − t ′ 

)
v g �∇ f P 

(
x , t ′ , k 

)
dt ′ 

]

ln 

(
f P + 1 

f P 

)
dk 

+ k B 

∫ 
C ( f P ) ln 

(
f P + 1 

f P 

)
dk , (26a) 

∂s 

∂t 
= −k B 

∫ [
θ1 −α

	( α) 

∂ 

∂t 

∫ t 
0 

(
t − t ′ 

)α−1 
v g �∇ f P 

(
x , t ′ , k 

)
dt ′ 

]

ln 

(
f P + 1 

f P 

)
dk 

+ k B 

∫ 
C ( f P ) ln 

(
f P + 1 

f P 

)
dk , (26b) 

Eqs. (26a) and (26b) imply that there exist no explicit expres- 

ions for the entropy flux, while the implicit expressions are re- 

pectively given by 

 � J ( x , t ) = k B 

∫ [∫ t 
0 

Y 
(
t − t ′ 

)
v g �∇ f P 

(
x , t ′ , k 

)
dt ′ 

]
ln 

(
f P + 1 

f P 

)
dk , 

(27a) 

 � J ( x , t ) = k B 

∫ [
θ1 −α

	( α) 

∂ 

∂t 

∫ t 
0 

(
t − t ′ 

)α−1 
v g �∇ f P 

(
x , t ′ , k 

)
dt ′ 

]

ln 

(
f P + 1 

f P 

)
dk . (27b) 

Using the expansion method stated above and neglecting the 

emainder terms., Eqs. (27a) and (27b) can be respectively approx- 

mated as 

 ( x , t ) ≈ 1 

T ( x , t ) 

[ ∫ t 
0 

M 

(
t − t ′ 

)
κ

q 
(
x , t ′ 

)
dt ′ 

] 

, (28a) 

 ( x , t ) ≈ 1 

T ( x , t ) 

θ1 −α

	( α) 

∂ 

∂t 

∫ t 
0 

(
t − t ′ 

)α−1 
q 
(
x , t ′ 

)
dt ′ . (28b) 

The corresponding approximations of the entropy production 

ate are thereafter calculated as follows, respectively, 

( x , t ) = 

[ ∫ t 
0 

M 

(
t − t ′ 

)
κ

q 
(
x , t ′ 

)
dt ′ 

] 

�∇ 

[
1 

T ( x , t ) 

]
, (29a) 

( x , t ) = ∇ 

[
1 

T ( x , t ) 

]
�
[

θ1 −α

	( α) 

∂ 

∂t 

∫ t 
0 

(
t − t ′ 

)α−1 
q 
(
x , t ′ 

)
dt ′ 

]
. 

(29b) 

Obviously, the above entropic functionals deviate from the CIT 

ramework even in the near-equilibrium region. 

In order to show the influence of anomalies in the continu- 

ty and entropy balance equations quantitatively, we consider the 

ingle-phase-lagging model as a comparative example. For this 

odel, the generalized drift term gives rise to the following conti- 

uity equation, 

∂u ( x , t ) 

∂t 
+ ∇ � q ( x , t + τ ) = 0 , (30a) 

nd meanwhile, the entropy flux and entropy production rate are 

ormulated as 
 

 

 

J ( x , t ) = 

q ( x ,t+ τ ) 
T ( x ,t ) 

σ ( x , t ) = q ( x , t + τ ) �∇ 

[
1 

T ( x ,t ) 

] . (30b) 
4 
It is observed that the differences between the anomalous and 

tandard cases are traceable to the difference between q ( x , t + τ ) 

nd q ( x , t ) . Through employing the first-order expansion, we can 

cquire the quantitative estimations, respectively, 

 � [ q ( x , t + τ ) − q ( x , t ) ] ≈ τ∇ �
[
∂q ( x , t ) 

∂t 

]
, (31a) 

 

 

 

q ( x ,t+ τ ) 
T ( x ,t ) 

− q ( x ,t ) 
T ( x ,t ) 

≈ τ
T ( x ,t ) 

∂q ( x ,t ) 
∂t 

[ q ( x , t + τ ) − q ( x , t ) ] �∇ 

[
1 

T ( x ,t ) 

]
≈ τ ∂q ( x ,t ) 

∂t 
�∇ 

[
1 

T ( x ,t ) 

] , (31b) 

hich indicate that the influence of anomalies in the continuity 

nd entropy balance equations depends on | ∂q ( x ,t ) 
∂t 

| . 
To sum up, the validity of the generalized drift term is debat- 

ble because it will paired with anomalies in energy continuity and 

ntropy balance. Accordingly, we suggest the generalized collision 

erm rather than the generalized drift term as the modified trans- 

ort theory for relaxational heat conduction. 

. Summary 

A modified Boltzmann transport theory is established for relax- 

tional heat conduction, which can give rise to the convolution re- 

ationship between the heat flux and temperature gradient as well 

s fractional Fourier law, which is the original content different 

rom previous studies. The main idea of this work is establish- 

ng such transport theory via generalizing the collision term. The 

eneralized collision term not only provides an underlying expla- 

ation for macroscopic relaxational heat conduction but also pos- 

esses engineering applications to situations far from equilibrium. 

n framework of this approach, the energy continuity equation and 

ntropy concepts obey existing theories. 

The Boltzmann transport theory for relaxational heat conduc- 

ion is not unique, which can also be achieved through general- 

zing the drift term. Different from the generalized collision term, 

he generalized drift term will give rise to the unconventional con- 

inuity equations and entropic concepts. To the best of our knowl- 

dge, there exists no experiment which can support these anoma- 

ous behaviors. Thus, we suggest the Boltzmann transport theory 

ith the generalized collision term as the mesoscopic description 

or relaxational heat conduction. 
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